Sabtu, 23 November 2013

Image dan Display



Image and Display merupakan hasil akhir dari keseluruhan proses dari pemodelan. Biasanya obyek pemodelan yang menjadi output adalah berupa gambar untuk kebutuhan koreksi pewarnaan, pencahayaan, atau visual effect yang dimasukkan pada tahap teksturing pemodelan. Dalam tahap display, menampilkan sebuah bacth Render, yaitu pemodelan yang dibangun, dilihat, dijalankan dengan tool animasi. Selanjutnya dianalisa apakah model yang dibangun sudah sesuai tujuan.

Ada beberapa metode yang digunakan untuk pemodelan 3D. Metode pemodelan obyek disesuaikan dengan kebutuhannya seperti dengan nurbs dan polygon ataupun subdivision. Modeling polygon merupakan bentuk segitiga dan segiempat yang menentukan area dari permukaan sebuah karakter. Setiap polygon menentukan sebuah bidang datar dengan meletakkan sebuah jajaran polygon sehingga kita bisa menciptakan bentuk-bentuk permukaan. Untuk mendapatkan permukaan yang halus, dibutuhkan banyak bidang polygon. Bila hanya digunakan sedikit polygon, maka object yang didapatkan akan terbagi menjadi pecahan-pecahan polygon.

Desain permodelan grafik sangat berkaitan dengan grafik komputer. Berikut adalah kegiatan yang berkaitan dengan grafik komputer:
  1. Pemodelan geometris : menciptakan model matematika dari objek-objek 2D dan 3D.
  2. Rendering : memproduksi citra yang lebih solid dari model yang telah dibentuk.
  3. Animasi : Menetapkan/menampilkan kembali tingkah laku/behaviour objek bergantung waktu.
  4. Graphics Library/package (contoh : OpenGL) adalah perantara aplikasi dan display hardware(Graphics System).
  5. Application program memetakan objek aplikasi ke tampilan/citra dengan memanggil graphics library.
  6. Hasil dari interaksi user menghasilkan/modifikasi citra.
  7. Citra merupakan hasil akhir dari sintesa, disain, manufaktur, visualisasi dll.

Jumat, 15 November 2013

Texturing

Texturing adalah proses pemberian karakterristik permukaan –termasuk warna, highlight, kilauan, sebaran cahaya (difusi) dan lainnya- pada objek. Karakteristik seperti bump juga diperhatikan saat proses texturing. Pada umumnya proses texturing adalah semacam pengecatan atau pemberian warna pada permukaan objek, walaupun ada juga proses texturing seperti displacement yang mengubah geometri objek.
 
Texture pada citra yakni frekuensi perubahan rona pada citra yang dinyatakan dengan kasar (coarseness), sedang (regularity), dan halusnya (smoothness) suatu permukaan pada citra tersebut. Aspek tekstural dari sebuah citra dapat dimanfaatkan sebagai dasar dari segmentasi, klasifikasi, maupun interpretasi citra. Tekstur dapat didefinisikan sebagai fungsi dari variasi spasial intensitas piksel (nilai keabuan) dalam citra.
  • Contoh : hutan bertekstur kasar, semak belukar bertekstur sedang, sedangkan sawah bertekstur halus
    Texturing Objek Rumah
Terdapat tiga masalah utama yang berhubungan dengan tekstur yaitu
  • Segmentasi Tekstur (Texture segmentation): merupakan masalah yang memecah suatu citra ke dalam beberapa   komponen dimana tekstur dianggap konstan. Segmentasi tekstur melibatkan representasi suatu tekstur, dan penentuan dasar dimana batas segmen akan ditentukan
  •  Sintesis Tekstur (Texture synthesis) berusaha untuk membangun region tekstur besar yang berasal dari contoh citra kecil yang ada. Dengan menggunakan contoh citra akan dibangun model probabilitas tekstur tersebut, dan kemudian menggambarkannya pada model probabilitas untuk menentukan tekstur citra
  •  Bentuk Tekstur (Shape from Texture) melibatkan perbaikan orientasi permukaan atau bentuk permukaan dari tekstur. Di sini diasumsikan bahwa tekstur “kelihatan sama” pada titik-titik yang berbeda pada suatu permukaan, ini artinya bahwa deformasi tekstur dari titik ke titik adalah petunjuk  bentuk permukaan.
Berdasarkan strukturnya, tekstur dapat diklasifikasikan dalam 2 golongan yaitu
  • Makrostruktur, tekstur makrostruktur memiliki perulangan pola local secara periodik dalam suatu daerah citra, biasanya terdapat pada pola-pola buatan manusia dan cenderung mudah untuk direpresentasikan secara matematis.
  • Mikrostruktur, pada tekstur mikrostruktur, pola-pola lokal dan perulangan tidak terjadi begitu jelas, sehinggga tidak mudah untuk memberikan definisi tekstur yang komprehensif.

Pemodelan Geometris

Pemodelan geometris merupakan cabang dari matematika terapan dan komputasi geometri yang mempelajari metode dan algoritma untuk deskripsi matematika bentuk.  Bentuk belajar di pemodelan geometris tersebut kebanyakan 2D atau 3D, karena 2D adalah model yang penting dalam komputer tipografi dan gambar teknik. Tiga dimensi model adalah pusat untuk computer aided design dan manufacturing (CAD / CAM), dan banyak digunakan dalam bidang teknik seperti sipil dan mechanical engineering, arsitektur, geologi dan medis pengolahan gambar.
       Geometris model yang bisa ditampilkan pada computer seperti shape/bentuk, posisi, orientasi, warna/tekstur, dan cahaya. Pada goemetris model juga terdapat tingkat-tingkat kesulitan untuk membuat suatu obyek seperti menghubungkan beberapa bentuk sudut pada permukaan bebas karena bentuk sudut tersebut harus pas dan teliti ukurannya agar gambar terlihat nyata.

Tranformasi dari suatu konsep (atau suatu benda nyata) ke suatu model geometris yang bisa di tampilkan pada suatu komputer:
  • shape/bentuk
  • posisi
  • Orientasi (cara pandang)
  • Surface Properties / ciri-ciri permukaan (warna, tekstur)
  • Volumetric Properties / ciri-ciri Volumetric (ketebalan/pejal, penyebaran cahaya)
  • Lights/cahaya (tingkat terang,jenis warna)
  • Dan lain-lain...
Pemodelan Geometris yang lebih rumit :
  • Jalan-jalan segi banyak : suatu koleksi yang besar dari segi bersudut banyak, dihubungkan satu sama lain
  • Bentuk permukaan bebas : menggunakan fungsi polynomial tingkat rendah
  • CSG : membangun suatu bentuk dengan menerapkan operasi boolean pada bentuk yang primitif.
Elemen-elemen Pembentuk Grafik


Pemrosesan Citra Untuk Ditampilkan Dilayar


 Sumber : http://aaf-aafwulan.blogspot.com/2011/10/pemodelan-geometris.html

Rendering

Rendering adalah proses akhir dari keseluruhan proses pemodelan ataupun animasi komputer. Dalam rendering, semua data-data yang sudah dimasukkan dalam proses modeling, animasi, texturing, pencahayaan dengan parameter tertentu akan diterjemahkan dalam sebuah bentuk output (tampilan akhir pada model dan animasi).
Rendering tidak hanya digunakan pada game programming, tetapi juga digunakan pada banyak bidang, misalnya arsitektur, simulator, movie, spesial effect pada tayangan televisi, dan design visualization. Rendering pada bidang-bidang tersebut memiliki perbedaan, terutama pada fitur dan teknik renderingnya. Terkadang rendering juga diintegrasikan dengan model yang lebih besar seperti paket animasi, tetapi terkadang berdiri sendiri dan juga bisa free open-source product.
 
Proses Rendering
Rendering harus dilakukan secara cermat dan teliti. Oleh karena itu terkadang dilakukan pre rendering sebelum rendering dilaksanakan. Per rendering sendiri ialah proses pengkomputeran secara intensif, biasanya digunakan untuk pembuatan film, menggunakan graphics card dan 3D hardware accelerator untuk penggunaan real time rendering.
Secara umum, proses untuk menghasilkan rendering dua dimensi dari objek-objek 3D melibatkan 5 komponen utama, yaitu geometri, kamera, cahaya, karakteristik permukaan dan algoritma rendering.
 
Metode Rendering
 
Ray Tracing Rendering
Ray tracing sebagai  sebuah metode  rendering pertama kali digunakan pada tahun 1980 untuk pembuatan gambar tiga dimensi. Ide dari metode rendering ini sendiri berasal dari percobaan Rene Descartes,  di mana ia menunjukkan pembentukan  pelangi  dengan  menggunakan  bola  kaca berisi air dan kemudian merunut kembali arah datangnya cahaya  dengan  memanfaatkan  teori  pemantulan  dan pembiasan cahaya yang telah ada saat itu.
Metode  rendering ini  diyakini  sebagai  salah  satu metode  yang  menghasilkan  gambar  bersifat  paling fotorealistik. Konsep dasar  dari  metode ini  adalah  merunut  proses yang  dialami  oleh  sebuah  cahaya  dalam perjalanannya dari  sumber  cahaya  hingga  layar  dan  memperkirakan warna  macam apa  yang  ditampilkan  pada  pixel  tempat jatuhnya  cahaya.  Proses  tersebut  akan  diulang  hingga seluruh pixel yang dibutuhkan terbentuk.

Wireframe rendering
Wireframe yaitu Objek 3D dideskripsikan sebagai objek tanpa permukaan. Pada wireframe rendering, sebuah objek dibentuk hanya terlihat garis-garis yang menggambarkan sisi-sisi edges dari sebuah objek. Metode ini dapat dilakukan oleh sebuah komputer dengan sangat cepat, hanya kelemahannya adalah tidak adanya permukaan, sehingga sebuah objek terlihat tranparent. Sehingga sering terjadi kesalahpahaman antara siss depan dan sisi belakang dari sebuah objek.

Hidden Line Rendering
Metode ini menggunakan fakta bahwa dalam sebuah objek, terdapat permukaan yang tidak terlihat atau permukaan yang tertutup oleh permukaan lainnya. Dengan metode ini, sebuah objek masih direpresentasikan dengan garis-garis yang mewakili sisi dari objek, tapi beberapa garis tidak terlihat karena adanya permukaan yang menghalanginya.
Metode ini lebih lambat dari dari wireframe rendering, tapi masih dikatakan relatif cepat. Kelemahan metode ini adalah tidak terlihatnya karakteristik permukaan dari objek tersebut, seperti warna, kilauan (shininess), tekstur, pencahayaan, dll.

Shaded Rendering
Pada metode ini, komputer diharuskan untuk melakukan berbagai perhitungan baik pencahayaan, karakteristik permukaan, shadow casting, dll. Metode ini menghasilkan citra yang sangat realistik, tetapi kelemahannya adalah lama waktu rendering yang dibutuhkan.
Contoh nyata dari rendering adalah dengan menggunakan software Blender, Vray (3DS Max) dan OpenGL. Satu trik khusus membuat kita dapat me-render seluruh film yang tengah kita buat dengan sangat cepat, yaitu render pranala. Bayangkan kita dapat segera menyaksikan karya kita, memeriksa kualitas animasi dan narasinya, tanpa perlu menunggu proses render yang terlalu lama. Render pranala memanfaatkan pustaka OpenGL yang menggambar seluruh antarmuka Blender termasuk viewport 3D ke layar, sehingga meski ia mengorbankan kualitas visual, jenis render ini dapat dilakukan dengan sangat cepat.

Sumber :
http://febriangressize.blogspot.com/2011/11/texturing-rendering-2d-dan-3d.html
http://wenythepooh.wordpress.com/2011/02/22/proses-rendering-dan-animasi-serta-contoh-nyatanya/


3D Modelling

Dalam grafik komputer 3D, 3D modeling adalah proses mengembangkan matematika representasi dari setiap tiga-dimensi benda (baik benda mati atau hidup) melalui perangkat lunak khusus. Produk ini disebut sebagai model 3D. Hal ini dapat ditampilkan sebagai gambar dua dimensi melalui proses yang disebut 3D rendering atau digunakan dalam komputer simulasi fenomena fisik. Model juga dapat secara fisik dibuat menggunakan perangkat Printing 3D.
Model dapat dibuat secara otomatis atau manual. Manual proses pemodelan geometris mempersiapkan data untuk komputer grafis 3D mirip dengan seni plastik seperti mematung.

3D Modelling Mobil Balap

MODEL

Model 3D mewakili objek 3D menggunakan koleksi poin dalam ruang 3D, dihubungkan dengan berbagai entitas geometris seperti segitiga, garis, permukaan lengkung, dll Menjadi pengumpulan data (poin dan informasi lainnya), model 3D dapat dibuat dengan tangan , algorithmically (model prosedural), atau scan. Model 3D banyak digunakan di mana saja di grafis 3D. Sebenarnya, mereka menggunakan luas mendahului penggunaan grafis 3D pada komputer pribadi. Banyak permainan komputer digunakan pra-gambar membuat model 3D seperti sprite sebelum komputer dapat membuat mereka secara real-time.
Modelling properti
Saat ini model 3D yang digunakan dalam berbagai bidang. Industri medis menggunakan model rinci organ. Industri film menggunakan mereka sebagai karakter dan objek untuk animasi dan kehidupan nyata film. Para industri permainan video menggunakan mereka sebagai aset untuk komputer dan video games. Sektor ilmu menggunakan mereka sebagai model sangat rinci senyawa kimia. Industri arsitektur menggunakan mereka untuk menunjukkan bangunan dan lanskap yang diusulkan melalui Arsitektur Perangkat Lunak Models. Komunitas teknik desain menggunakan mereka sebagai alat baru, kendaraan dan struktur serta sejumlah penggunaan lainnya. Pada dekade belakangan ini dalam ilmu bumi masyarakat telah mulai membangun 3D model geologi sebagai praktik standar.

REPRESENTASI
Hampir semua model 3D dapat dibagi menjadi dua kategori.
  • Solid - Model-model ini menentukan volume objek yang mereka wakili (seperti batu). Ini lebih realistis, tapi lebih sulit untuk membangun. Model padat banyak digunakan untuk simulasi nonvisual seperti medis dan teknik simulasi, CAD dan khusus untuk aplikasi visual seperti ray tracing dan konstruktif geometri solid
  • Shell / batas - model ini mewakili permukaan, misalnya batas objek, bukan volume (seperti kulit telur yang amat sangat tipis). Ini lebih mudah untuk bekerja dengan daripada model padat. Hampir semua model visual digunakan dalam permainan dan film shell model.


Proses Pemodelan Objek 3D

Pemodelan Objek 3D

PROSES PEMODELAN
Ada lima cara populer untuk mewakili model:
  • Polygonal pemodelan - Points dalam ruang 3D, yang disebut simpul, terhubung dengan segmen garis membentuk suatu poligonal mesh. Digunakan, misalnya, oleh Blender. Sebagian besar model 3D saat ini dibangun sebagai model poligonal bertekstur, karena mereka fleksibel dan karena komputer dapat membuat mereka begitu cepat. Namun, poligon adalah planar dan hanya dapat mendekati permukaan lengkung menggunakan banyak poligon
  • NURBS modeling - NURBS Surfaces ditentukan oleh kurva spline, yang dipengaruhi oleh tertimbang titik kontrol.  Kurva berikut (tetapi tidak perlu interpolasi) titik. Meningkatkan berat badan untuk suatu titik akan menarik kurva mendekati titik itu. NURBS permukaan yang benar-benar halus, bukan pendekatan dengan menggunakan permukaan datar kecil, dan begitu juga sangat cocok untuk model organik. Maya dan Rhino 3d adalah yang paling terkenal software komersial yang menggunakan NURBS aslinya
  • Pemodelan Splines & Patch - Seperti NURBS, Splines dan Patch tergantung pada garis lengkung untuk menentukan permukaan terlihat. Patch jatuh di suatu tempat antara NURBS dan poligon dalam hal fleksibilitas dan kemudahan penggunaan
  • Primitif pemodelan - Prosedur ini memerlukan geometris primitif seperti bola, silinder, kerucut atau kubus sebagai blok bangunan untuk model yang lebih kompleks. Manfaat yang cepat dan mudah konstruksi dan bahwa bentuk-bentuk secara matematis didefinisikan dan dengan demikian benar-benar tepat, juga definisi bahasa dapat lebih sederhana. Primitif pemodelan yang cocok untuk aplikasi teknis dan kurang untuk bentuk-bentuk organik. Beberapa perangkat lunak 3D bisa langsung render dari primitif (seperti POV-Ray), yang lain menggunakan primitif hanya untuk pemodelan dan mengkonversikannya ke jala-jala untuk operasi lebih lanjut dan rendering
  • Memahat pemodelan - Masih cukup metode baru untuk 3D modeling mematung telah menjadi sangat populer dalam beberapa tahun yang singkat itu telah sekitar. Ada 2 jenis saat ini, Pemindahan yang paling banyak digunakan di antara aplikasi pada saat ini, dan volumetrik. Perpindahan menggunakan model padat (sering dihasilkan oleh permukaan Subdivision dari kontrol poligon mesh) dan toko-toko lokasi baru untuk posisi dhuwur melalui penggunaan peta gambar 32-bit yang menyimpan lokasi yang disesuaikan. Volumetrik yang longgar didasarkan pada Voxels memiliki kemampuan sama seperti perpindahan, tetapi tidak menderita dari poligon peregangan bila tidak ada cukup poligon di suatu daerah untuk mencapai deformasi. Kedua metode ini memungkinkan untuk eksplorasi sangat artistik sebagai model akan memiliki topologi baru diciptakan atas model sekali bentuk dan mungkin rincian telah diukir. Jala yang baru biasanya memiliki resolusi tinggi asli informasi mesh ditransfer ke perpindahan data atau data peta yang normal jika untuk mesin permainan.

sumber : http://en.wikipedia.org/wiki/3D_modeling

Motion Capture

Motion capture, motion tracking, atau mocap adalah terminologi yang digunakan untuk mendeskripsikan proses dari perekaman gerakan dan pengartian gerakan tersebut menjadi model digital. Metode ini digunakan dalam militer, industri hiburan, olahraga, aplikasi medis, dan untuk validasi sisi computer dan robot. Dalam pembuatan film, motion capture berarti merekam aksi dari aktor manusia dan menggunakan informasi tersebut untuk menganimasi karakter digital ke model animasi computer dua dimensi atau tiga dimensi. Termasuk wajah, jari-jari atau penangkapan ekspresi yang halus, kegiatan ini biasa dikatakan sebagai performance capture.

Dalam sesi motion capture, gerakan-gerakan dari satu atau lebih aktor diambil sampelnya berkali-kali perdetik, motion capture hanya merekam gerakan-gerakan dari aktor, bukan merekam penampilan visualnya. Data animasi ini dipetakan menjadi model tiga dimensi agar model tersebut menunjukkan aksi yang sama seperti aktor.

Penggunaan Mocap Suit

Gerakan kamera juga dapat di-motion capture sehingga kamera virtual dalam sebuah skema dapat berjalan, miring, atau dikerek mengelilingi panggung dikendalikan oleh operator kamera ketika aktor sedang melakukan pertunjukan, dan sistem motion capture bisa mendapatkan kamera dan properti sebaik pertunjukan dari aktor tersebut. Hal ini membuat karakter komputer, gambar, dan set memiliki perspektif yang sama dengan gambar video dari kamera.
Keunggulan Penggunaan Motion Capture
Motion capture menawarkan beberapa keuntungan dibandingkan animasi komputer tradisional dari model tiga dimensi:
  • Lebih cepat, bahkan hasil secara real time bisa didapatkan. Dalam aplikasi hiburan, hal ini dapat mengurangi biaya dari animasi berbasis keyframe. Contohnya: Hand Over
  • Jumlah kerja tidak berubah dengan kompleksitas atau panjang pertunjukan dalam tingkatan yang sama ketika menggunakan teknik tradisional. Hal ini membuat banyak tes diselesaikan dengan gaya dan penyampaian yang berbeda
  • Gerakan kompleks dan interaksi fisik yang realistis seperti gerakan sekunder, berat, dan pertukaran tekanan dapat dengan mudah dibuat kembali dalam cara akurat secara fisik
  • Jumlah data animasi yang bisa diproduksi dalam waktu yang diberikan sangatlah besar saat dibandingkan dengan teknik animasi tradisional. Hal ini berkontribusi dalam keefektifan biaya dan mencapai deadline produksi
  • Potensi software gratis dan solusi dari pihak luar dapat mengurangi biaya yang dikeluarkan.

Kekurangan Pengunaan Motion Capture 
  • Hardware yang spesifik dan program yang special dibutuhkan untuk mendapatkan dan memproses data
  • Biaya software, perlengkapan, dan personel yang dibutuhkan dapat berpotensi menjadi penghalang bagi produksi-produksi kecil
  • Sistem pengambilan gerakan mungkin memiliki kebutuhan yang spesifik untuk ruangan operasi, tergantung dari pandangan kamera atau distorsi magnetik
  • Ketika masalah terjadi, lebih mudah untuk mengambil ulang skema daripada mencoba untuk memanipulasi data. Hanya beberapa sistem yang memungkinkan penampilan data yang real time untuk memilih apakah gambar yang diambil butuh diambil ulang.
  • Hasil yang penting itu terbatas untuk apa yang bisa ditunjukkan dalam volume pengambilan tanpa editing tambahan dari data tersebut
  • Gerakan yang tidak mengikuti hokum fisika secara umum tidak bisa diambil
  • Teknik animasi tradisional, seperti menambahkan tekanan dari antisipasi dan kelanjutannya, gerakan kedua atau memanipulasi bentuk dari karakter, seperti dengan melumatkan dan memperpanjang teknik animasi, harus ditambahkan nanti
  • Jika model komputer memiliki proporsoi yang berbeda dari subjek yang diambil, artifak mungkin terjadi. Contohnya, jika seorang karakter kartun mempunyai tangan yang berukuran terlalu besar, hal ini dapat memotong badan karakter jika orang yang melakukaknnya tidak berhati-hati dengan gerakan fisiknya.
Representasi dari Motion yang di Capture

Applikasi
Video game biasa menggunakan motion capture untuk menganimasikan atlet, ahli bela diri, dan karakter dalam permainan lainnya. Ini telah dilakukan sejak Atari Jaguar yang memiliki permainan berbasis cd, yaitu Highlander: The Last of the MacLeods, dikeluarkan tahun 1995.
Film menggunakan motion capture untuk efek CG, dalam beberapa kasus mengganti animasi tradisional, dan untuk ciptaan yang dibentuk secara utuh dari komputer, seperti Gollum, The Mummy, King Kong, dan The NA’vi dari film Avatar.

Penggunaan Mocap dalam industri Film
Metode dan sistem
Penanda reflektif ditancapkan pada kulit untuk mengidentifikasi letak tulang dan gerakan tiga dimensi dari tubuh. Motion Capture dimulasi sebagai alat analisis photogrammetric dalam penelitian biomechanics pada tahun 1970-an dan 1980-an, serta meluas ke ranah edukasi, latihan, olahraga, dan baru saja ke ranah animasi komputer untuk televise, sinema, dan video games seiring dengan dewasanya teknologi ini. Seorang yang dipilih menggunakan penanda di dekat setiap sendi tulang untuk mengidentifikasi gerakan dari posisi atau sudut antar penanda tersebut.

Sumber : http://id.wikipedia.org/wiki/Motion_capture

Sabtu, 27 April 2013

Web Science


Pengertian
 
Web adalah system dengan standar yanag diterima secara universal untuk menyimpan, menleusuri, memformat, dan menampilkan informasi melelui arsitektur klient/ server. Web bisa menerima semua jenis informasi digital, termasuk teks, hypermedia, grafis, dan suara. Web menggunakan antarmuka pengguna grafis, sehingga sangat mudah digunakan. Teknologi World Wide Web dicipatakan oleh Timothy Berners-Lee, yang pada tahun 1989 mengusulkan jaringan global dari dokumen hiperteks yang akan memungkinkan para peneliti fisika berkerja sama.

Sejarah web science dimulai dari sebuah kesepakatan antara MIT dan University of Southampton untuk menjembatani, merumuskan dan teknis aspek-aspek sosial dari World Wide Web. Hal ini pertama kali diumumkan di MIT pada tanggal 2 Novenber 2006 sebagai Web Science Research Initiative (WSRI), yang kemudian mengubah namanya pada tahun 2009 menjadi Web Science Trust. Organisasi yang diketuai oleh Timothy Berners-Lee ini bertujuan untuk mencari dukungan lebih banyak lagi dari pihak pemerintah dan swasta untuk bekerjasama pada beberapa proyek yang memperbaiki pengertian tentang Web Science dan mempromosikan dampak positif Web Science pada masyarakat.

Jadi, web science adalah sebuah disiplin ilmu pengetahuan berbasis web yang fokus pada pengembangan kebutuhan komunikasi dan representasi. Web science sendiri terdiri dari berbagai cabang disiplin ilmu yang bertujuan untuk mengkoordinasi dan meningkatkan lebih lagi pembelajaran tentang web (World Wide web).hal ini sangat diperlukan karena perkembangan web yang sangat pesat pada saat ini disadari dapat digunakan sebagai sarana untuk mengubah masyarakat kearah yang lebih baik sehingga kita semua dapat merasakan manfaat dari web secara positif.Jadi web science ini bertujuan supaya fungsi dan manfaat web dapat tepat sasaran dan tepat guna di kalangan masyarakat pada umumnya.

Dengan adanya web science, masyarakat pada umumnya dapat mengakses berbagai informasi yang berhuibungan dengan ilmu pengetahuan dengan lebih mudah. web science ini lebih menekankan dalam proses penyajian data yang berhubungan dengan penyajian internet.sehingga dengan adanya web science kita semua dapat mengambil sisi positif dari berbagai perkembangan teknologi yang ada dan memanfaatkannya atau bahkan mengembangkannya dengan sebaik-baiknya.
Menurut Hearst [Helfin, 2003] salah satu problem baru pada ledakan informasi adalah terjadinya keragaman yang disebabkan oleh beberapa hal utama sebagai berikut:
  1. Web adalah massive, dimana jumlah sumber data dan informasi berbasis web mengalami pertumbuhan yang luar biasa dalam orde ratusan ribu hingga juta per tahun.
  2. Web bersifat terdistribusi, teknologi web memberikan tingkat autonomi yang lebih tinggi sehingga ketersebarannya juga semakin besar. Akibatnya setiap pemilik web dapat menyajikan data ataupun informasi dengan vocabulary yang berbeda walau yang dimaksud adalah sama.
  3. Web juga bersifat dinamis, sebuah web bisa hadir pada jaringan Internet tidak terikat, lokasi geografis ataupun nama logika dari sebuah sumber informasi dapat berubah secara mudah dan sering, perubahan isi dari web juga tidak dapat diperkirakan.
  4. Web bersifat open, sebuah web dapat dibuat dan dibaca oleh setiap orang secara prinsip. Sehingga isu keamanan dan kepercayaan (trust) menjadi permasalah tersendiri.
Perkembangan Web Science

Pada ledakan informasi di Internet, search engine merupakan salah satu kill-application yang penting. Ini menjadi dorongan utama lahirnya search engine Mbah Google. Walaupun Google telah memiliki koleksi data yang menakjubkan, tetap saja masih ada kelemahan utama, yaitu kalau kita mencari sesuatu, maka yang sesuai dengan yang kita inginkan masih di bawah 5% dibandingkan koleksi yang ditampilkan dari pencarian Google. Ledakan informasi tersebut membawa pergeseran teknologi dan pemanfaatan Web semakin dominan.

Secara luar biasa telah terjadi pergeseran Web 1.0 ke Web 3.0 sebagai berikut:
  • Web 1.0 yang sejak tahun 1992 mulai memperkenalkan beragam web browser, serta mendorong pertumbuhan pemanfaatan Web sebagai penyedia informasi. Pada tingkat ini web masih bersifat read only.
  • Web 2.0 mulai menjadi trend pada tahun 1997, ini memperkaya sifat yang read only menjadi read write. Aplikasi berbasis Web semakin banyak diterapkan. Web dan sosial dimulai dengan lahirnya berbagai sarana seperti wikipedia, blog, friendster.
  • Web 3.0 merupakan rancangan untuk memperkaya Web 2.0, dimana pada Web 2.0 baru memperhatikan pertukaran data antara manusia, pada Web 3.0 pertukaran data antar manusia-mesin, mesin-mesin dan manusia-manusia disempurnakan.

Beberapa istilah dalam pengelolaan web

1. Domain Name
Domain Name atau biasa disebut nama domain adalah alamat permanen situs di dunia internet yang digunakan untuk mengidentifikasi sebuah situs atau dengan kata lain domain name adalah alamat yang digunakan untuk menemukan situs kita pada dunia internet. Istilah yang umum digunakan adalah url.

2. Hosting
Hosting dapat diartikan sebagai ruangan yang terdapat dalam harddisk tempat menyimpan berbagai data, file-file, gambar dan lain sebagainya yang akan ditampilkan di situs. Besarnya data yang bisa dimasukkan tergantung dari besarnya hosting yang disewa/dipunyai, semakin besar hosting semakin besar pula data yang dapat dimasukkan dan ditampilkan dalam situs.

3. Hypertext Markup Language
Bahasa pemrograman yang digunakan di Web, yang memformat dokumen dan memadukan link hiperteks dinamis ke dokumen-dokumen lainnya yang disimpan didalam komputer.

4. Design Web
Setelah melakukan penyewaan domain dan hosting serta penguasaan scripts, unsur situs yang paling penting dan utama adalah design. Design web sangat menentukan kualitas dan keindahan situs. Design sangat berpengaruh kepada penilaian pengunjung akan bagus tidaknya sebuah web site.

5. Hypertext Transfer Protokol (HTTP)
Standar komunikasi yang digunakan untuk mentransfer halaman di bagian WWW di internet. HTTP mendefinisikan bagaimana pesan diformat dan dikirim.

6. World wide web (WWW)
Sistem dengan standar yang diterima secara universal untuk menyimpan, menelusuri, memformat, dan menampilkan informasi melalui arsitektur klien/ server mengunakan fungsi-fungsi transport dari internet.

7. Home Page
Tampilan layar grafis dan teks yang menyambut pengguna dan menjelaskan organisasi yang membuat halaman tersebut.

8. Situs Web
Semua halaman Web dari perusahaan atau individu tertentu

9. Uniform Resource Locator (URL)
Serangkaian huruf yang mengidentifikasi alamat dari sumber tertentu di web.

Sumber :
http://codycoding.wordpress.com/2011/02/17/web-science/
http://safemode.web.id/artikel/teknologi/pengertian-web-science#ixzz2Ri1Xfg00
http://yonando.blogspot.com/2011/03/pengertian-web-science-dan-perkembangan.html
http://ilfen.blogspot.com/2013/04/definisi-web-science-dan-sejarah-web-10_16.html
Turban, Efraim. Pengantar Teknologi Informasi, Edisi 3. Jakarta : Salemba Infotek

Sabtu, 23 November 2013

Image dan Display



Image and Display merupakan hasil akhir dari keseluruhan proses dari pemodelan. Biasanya obyek pemodelan yang menjadi output adalah berupa gambar untuk kebutuhan koreksi pewarnaan, pencahayaan, atau visual effect yang dimasukkan pada tahap teksturing pemodelan. Dalam tahap display, menampilkan sebuah bacth Render, yaitu pemodelan yang dibangun, dilihat, dijalankan dengan tool animasi. Selanjutnya dianalisa apakah model yang dibangun sudah sesuai tujuan.

Ada beberapa metode yang digunakan untuk pemodelan 3D. Metode pemodelan obyek disesuaikan dengan kebutuhannya seperti dengan nurbs dan polygon ataupun subdivision. Modeling polygon merupakan bentuk segitiga dan segiempat yang menentukan area dari permukaan sebuah karakter. Setiap polygon menentukan sebuah bidang datar dengan meletakkan sebuah jajaran polygon sehingga kita bisa menciptakan bentuk-bentuk permukaan. Untuk mendapatkan permukaan yang halus, dibutuhkan banyak bidang polygon. Bila hanya digunakan sedikit polygon, maka object yang didapatkan akan terbagi menjadi pecahan-pecahan polygon.

Desain permodelan grafik sangat berkaitan dengan grafik komputer. Berikut adalah kegiatan yang berkaitan dengan grafik komputer:
  1. Pemodelan geometris : menciptakan model matematika dari objek-objek 2D dan 3D.
  2. Rendering : memproduksi citra yang lebih solid dari model yang telah dibentuk.
  3. Animasi : Menetapkan/menampilkan kembali tingkah laku/behaviour objek bergantung waktu.
  4. Graphics Library/package (contoh : OpenGL) adalah perantara aplikasi dan display hardware(Graphics System).
  5. Application program memetakan objek aplikasi ke tampilan/citra dengan memanggil graphics library.
  6. Hasil dari interaksi user menghasilkan/modifikasi citra.
  7. Citra merupakan hasil akhir dari sintesa, disain, manufaktur, visualisasi dll.

Jumat, 15 November 2013

Texturing

Texturing adalah proses pemberian karakterristik permukaan –termasuk warna, highlight, kilauan, sebaran cahaya (difusi) dan lainnya- pada objek. Karakteristik seperti bump juga diperhatikan saat proses texturing. Pada umumnya proses texturing adalah semacam pengecatan atau pemberian warna pada permukaan objek, walaupun ada juga proses texturing seperti displacement yang mengubah geometri objek.
 
Texture pada citra yakni frekuensi perubahan rona pada citra yang dinyatakan dengan kasar (coarseness), sedang (regularity), dan halusnya (smoothness) suatu permukaan pada citra tersebut. Aspek tekstural dari sebuah citra dapat dimanfaatkan sebagai dasar dari segmentasi, klasifikasi, maupun interpretasi citra. Tekstur dapat didefinisikan sebagai fungsi dari variasi spasial intensitas piksel (nilai keabuan) dalam citra.
  • Contoh : hutan bertekstur kasar, semak belukar bertekstur sedang, sedangkan sawah bertekstur halus
    Texturing Objek Rumah
Terdapat tiga masalah utama yang berhubungan dengan tekstur yaitu
  • Segmentasi Tekstur (Texture segmentation): merupakan masalah yang memecah suatu citra ke dalam beberapa   komponen dimana tekstur dianggap konstan. Segmentasi tekstur melibatkan representasi suatu tekstur, dan penentuan dasar dimana batas segmen akan ditentukan
  •  Sintesis Tekstur (Texture synthesis) berusaha untuk membangun region tekstur besar yang berasal dari contoh citra kecil yang ada. Dengan menggunakan contoh citra akan dibangun model probabilitas tekstur tersebut, dan kemudian menggambarkannya pada model probabilitas untuk menentukan tekstur citra
  •  Bentuk Tekstur (Shape from Texture) melibatkan perbaikan orientasi permukaan atau bentuk permukaan dari tekstur. Di sini diasumsikan bahwa tekstur “kelihatan sama” pada titik-titik yang berbeda pada suatu permukaan, ini artinya bahwa deformasi tekstur dari titik ke titik adalah petunjuk  bentuk permukaan.
Berdasarkan strukturnya, tekstur dapat diklasifikasikan dalam 2 golongan yaitu
  • Makrostruktur, tekstur makrostruktur memiliki perulangan pola local secara periodik dalam suatu daerah citra, biasanya terdapat pada pola-pola buatan manusia dan cenderung mudah untuk direpresentasikan secara matematis.
  • Mikrostruktur, pada tekstur mikrostruktur, pola-pola lokal dan perulangan tidak terjadi begitu jelas, sehinggga tidak mudah untuk memberikan definisi tekstur yang komprehensif.

Pemodelan Geometris

Pemodelan geometris merupakan cabang dari matematika terapan dan komputasi geometri yang mempelajari metode dan algoritma untuk deskripsi matematika bentuk.  Bentuk belajar di pemodelan geometris tersebut kebanyakan 2D atau 3D, karena 2D adalah model yang penting dalam komputer tipografi dan gambar teknik. Tiga dimensi model adalah pusat untuk computer aided design dan manufacturing (CAD / CAM), dan banyak digunakan dalam bidang teknik seperti sipil dan mechanical engineering, arsitektur, geologi dan medis pengolahan gambar.
       Geometris model yang bisa ditampilkan pada computer seperti shape/bentuk, posisi, orientasi, warna/tekstur, dan cahaya. Pada goemetris model juga terdapat tingkat-tingkat kesulitan untuk membuat suatu obyek seperti menghubungkan beberapa bentuk sudut pada permukaan bebas karena bentuk sudut tersebut harus pas dan teliti ukurannya agar gambar terlihat nyata.

Tranformasi dari suatu konsep (atau suatu benda nyata) ke suatu model geometris yang bisa di tampilkan pada suatu komputer:
  • shape/bentuk
  • posisi
  • Orientasi (cara pandang)
  • Surface Properties / ciri-ciri permukaan (warna, tekstur)
  • Volumetric Properties / ciri-ciri Volumetric (ketebalan/pejal, penyebaran cahaya)
  • Lights/cahaya (tingkat terang,jenis warna)
  • Dan lain-lain...
Pemodelan Geometris yang lebih rumit :
  • Jalan-jalan segi banyak : suatu koleksi yang besar dari segi bersudut banyak, dihubungkan satu sama lain
  • Bentuk permukaan bebas : menggunakan fungsi polynomial tingkat rendah
  • CSG : membangun suatu bentuk dengan menerapkan operasi boolean pada bentuk yang primitif.
Elemen-elemen Pembentuk Grafik


Pemrosesan Citra Untuk Ditampilkan Dilayar


 Sumber : http://aaf-aafwulan.blogspot.com/2011/10/pemodelan-geometris.html

Rendering

Rendering adalah proses akhir dari keseluruhan proses pemodelan ataupun animasi komputer. Dalam rendering, semua data-data yang sudah dimasukkan dalam proses modeling, animasi, texturing, pencahayaan dengan parameter tertentu akan diterjemahkan dalam sebuah bentuk output (tampilan akhir pada model dan animasi).
Rendering tidak hanya digunakan pada game programming, tetapi juga digunakan pada banyak bidang, misalnya arsitektur, simulator, movie, spesial effect pada tayangan televisi, dan design visualization. Rendering pada bidang-bidang tersebut memiliki perbedaan, terutama pada fitur dan teknik renderingnya. Terkadang rendering juga diintegrasikan dengan model yang lebih besar seperti paket animasi, tetapi terkadang berdiri sendiri dan juga bisa free open-source product.
 
Proses Rendering
Rendering harus dilakukan secara cermat dan teliti. Oleh karena itu terkadang dilakukan pre rendering sebelum rendering dilaksanakan. Per rendering sendiri ialah proses pengkomputeran secara intensif, biasanya digunakan untuk pembuatan film, menggunakan graphics card dan 3D hardware accelerator untuk penggunaan real time rendering.
Secara umum, proses untuk menghasilkan rendering dua dimensi dari objek-objek 3D melibatkan 5 komponen utama, yaitu geometri, kamera, cahaya, karakteristik permukaan dan algoritma rendering.
 
Metode Rendering
 
Ray Tracing Rendering
Ray tracing sebagai  sebuah metode  rendering pertama kali digunakan pada tahun 1980 untuk pembuatan gambar tiga dimensi. Ide dari metode rendering ini sendiri berasal dari percobaan Rene Descartes,  di mana ia menunjukkan pembentukan  pelangi  dengan  menggunakan  bola  kaca berisi air dan kemudian merunut kembali arah datangnya cahaya  dengan  memanfaatkan  teori  pemantulan  dan pembiasan cahaya yang telah ada saat itu.
Metode  rendering ini  diyakini  sebagai  salah  satu metode  yang  menghasilkan  gambar  bersifat  paling fotorealistik. Konsep dasar  dari  metode ini  adalah  merunut  proses yang  dialami  oleh  sebuah  cahaya  dalam perjalanannya dari  sumber  cahaya  hingga  layar  dan  memperkirakan warna  macam apa  yang  ditampilkan  pada  pixel  tempat jatuhnya  cahaya.  Proses  tersebut  akan  diulang  hingga seluruh pixel yang dibutuhkan terbentuk.

Wireframe rendering
Wireframe yaitu Objek 3D dideskripsikan sebagai objek tanpa permukaan. Pada wireframe rendering, sebuah objek dibentuk hanya terlihat garis-garis yang menggambarkan sisi-sisi edges dari sebuah objek. Metode ini dapat dilakukan oleh sebuah komputer dengan sangat cepat, hanya kelemahannya adalah tidak adanya permukaan, sehingga sebuah objek terlihat tranparent. Sehingga sering terjadi kesalahpahaman antara siss depan dan sisi belakang dari sebuah objek.

Hidden Line Rendering
Metode ini menggunakan fakta bahwa dalam sebuah objek, terdapat permukaan yang tidak terlihat atau permukaan yang tertutup oleh permukaan lainnya. Dengan metode ini, sebuah objek masih direpresentasikan dengan garis-garis yang mewakili sisi dari objek, tapi beberapa garis tidak terlihat karena adanya permukaan yang menghalanginya.
Metode ini lebih lambat dari dari wireframe rendering, tapi masih dikatakan relatif cepat. Kelemahan metode ini adalah tidak terlihatnya karakteristik permukaan dari objek tersebut, seperti warna, kilauan (shininess), tekstur, pencahayaan, dll.

Shaded Rendering
Pada metode ini, komputer diharuskan untuk melakukan berbagai perhitungan baik pencahayaan, karakteristik permukaan, shadow casting, dll. Metode ini menghasilkan citra yang sangat realistik, tetapi kelemahannya adalah lama waktu rendering yang dibutuhkan.
Contoh nyata dari rendering adalah dengan menggunakan software Blender, Vray (3DS Max) dan OpenGL. Satu trik khusus membuat kita dapat me-render seluruh film yang tengah kita buat dengan sangat cepat, yaitu render pranala. Bayangkan kita dapat segera menyaksikan karya kita, memeriksa kualitas animasi dan narasinya, tanpa perlu menunggu proses render yang terlalu lama. Render pranala memanfaatkan pustaka OpenGL yang menggambar seluruh antarmuka Blender termasuk viewport 3D ke layar, sehingga meski ia mengorbankan kualitas visual, jenis render ini dapat dilakukan dengan sangat cepat.

Sumber :
http://febriangressize.blogspot.com/2011/11/texturing-rendering-2d-dan-3d.html
http://wenythepooh.wordpress.com/2011/02/22/proses-rendering-dan-animasi-serta-contoh-nyatanya/


3D Modelling

Dalam grafik komputer 3D, 3D modeling adalah proses mengembangkan matematika representasi dari setiap tiga-dimensi benda (baik benda mati atau hidup) melalui perangkat lunak khusus. Produk ini disebut sebagai model 3D. Hal ini dapat ditampilkan sebagai gambar dua dimensi melalui proses yang disebut 3D rendering atau digunakan dalam komputer simulasi fenomena fisik. Model juga dapat secara fisik dibuat menggunakan perangkat Printing 3D.
Model dapat dibuat secara otomatis atau manual. Manual proses pemodelan geometris mempersiapkan data untuk komputer grafis 3D mirip dengan seni plastik seperti mematung.

3D Modelling Mobil Balap

MODEL

Model 3D mewakili objek 3D menggunakan koleksi poin dalam ruang 3D, dihubungkan dengan berbagai entitas geometris seperti segitiga, garis, permukaan lengkung, dll Menjadi pengumpulan data (poin dan informasi lainnya), model 3D dapat dibuat dengan tangan , algorithmically (model prosedural), atau scan. Model 3D banyak digunakan di mana saja di grafis 3D. Sebenarnya, mereka menggunakan luas mendahului penggunaan grafis 3D pada komputer pribadi. Banyak permainan komputer digunakan pra-gambar membuat model 3D seperti sprite sebelum komputer dapat membuat mereka secara real-time.
Modelling properti
Saat ini model 3D yang digunakan dalam berbagai bidang. Industri medis menggunakan model rinci organ. Industri film menggunakan mereka sebagai karakter dan objek untuk animasi dan kehidupan nyata film. Para industri permainan video menggunakan mereka sebagai aset untuk komputer dan video games. Sektor ilmu menggunakan mereka sebagai model sangat rinci senyawa kimia. Industri arsitektur menggunakan mereka untuk menunjukkan bangunan dan lanskap yang diusulkan melalui Arsitektur Perangkat Lunak Models. Komunitas teknik desain menggunakan mereka sebagai alat baru, kendaraan dan struktur serta sejumlah penggunaan lainnya. Pada dekade belakangan ini dalam ilmu bumi masyarakat telah mulai membangun 3D model geologi sebagai praktik standar.

REPRESENTASI
Hampir semua model 3D dapat dibagi menjadi dua kategori.
  • Solid - Model-model ini menentukan volume objek yang mereka wakili (seperti batu). Ini lebih realistis, tapi lebih sulit untuk membangun. Model padat banyak digunakan untuk simulasi nonvisual seperti medis dan teknik simulasi, CAD dan khusus untuk aplikasi visual seperti ray tracing dan konstruktif geometri solid
  • Shell / batas - model ini mewakili permukaan, misalnya batas objek, bukan volume (seperti kulit telur yang amat sangat tipis). Ini lebih mudah untuk bekerja dengan daripada model padat. Hampir semua model visual digunakan dalam permainan dan film shell model.


Proses Pemodelan Objek 3D

Pemodelan Objek 3D

PROSES PEMODELAN
Ada lima cara populer untuk mewakili model:
  • Polygonal pemodelan - Points dalam ruang 3D, yang disebut simpul, terhubung dengan segmen garis membentuk suatu poligonal mesh. Digunakan, misalnya, oleh Blender. Sebagian besar model 3D saat ini dibangun sebagai model poligonal bertekstur, karena mereka fleksibel dan karena komputer dapat membuat mereka begitu cepat. Namun, poligon adalah planar dan hanya dapat mendekati permukaan lengkung menggunakan banyak poligon
  • NURBS modeling - NURBS Surfaces ditentukan oleh kurva spline, yang dipengaruhi oleh tertimbang titik kontrol.  Kurva berikut (tetapi tidak perlu interpolasi) titik. Meningkatkan berat badan untuk suatu titik akan menarik kurva mendekati titik itu. NURBS permukaan yang benar-benar halus, bukan pendekatan dengan menggunakan permukaan datar kecil, dan begitu juga sangat cocok untuk model organik. Maya dan Rhino 3d adalah yang paling terkenal software komersial yang menggunakan NURBS aslinya
  • Pemodelan Splines & Patch - Seperti NURBS, Splines dan Patch tergantung pada garis lengkung untuk menentukan permukaan terlihat. Patch jatuh di suatu tempat antara NURBS dan poligon dalam hal fleksibilitas dan kemudahan penggunaan
  • Primitif pemodelan - Prosedur ini memerlukan geometris primitif seperti bola, silinder, kerucut atau kubus sebagai blok bangunan untuk model yang lebih kompleks. Manfaat yang cepat dan mudah konstruksi dan bahwa bentuk-bentuk secara matematis didefinisikan dan dengan demikian benar-benar tepat, juga definisi bahasa dapat lebih sederhana. Primitif pemodelan yang cocok untuk aplikasi teknis dan kurang untuk bentuk-bentuk organik. Beberapa perangkat lunak 3D bisa langsung render dari primitif (seperti POV-Ray), yang lain menggunakan primitif hanya untuk pemodelan dan mengkonversikannya ke jala-jala untuk operasi lebih lanjut dan rendering
  • Memahat pemodelan - Masih cukup metode baru untuk 3D modeling mematung telah menjadi sangat populer dalam beberapa tahun yang singkat itu telah sekitar. Ada 2 jenis saat ini, Pemindahan yang paling banyak digunakan di antara aplikasi pada saat ini, dan volumetrik. Perpindahan menggunakan model padat (sering dihasilkan oleh permukaan Subdivision dari kontrol poligon mesh) dan toko-toko lokasi baru untuk posisi dhuwur melalui penggunaan peta gambar 32-bit yang menyimpan lokasi yang disesuaikan. Volumetrik yang longgar didasarkan pada Voxels memiliki kemampuan sama seperti perpindahan, tetapi tidak menderita dari poligon peregangan bila tidak ada cukup poligon di suatu daerah untuk mencapai deformasi. Kedua metode ini memungkinkan untuk eksplorasi sangat artistik sebagai model akan memiliki topologi baru diciptakan atas model sekali bentuk dan mungkin rincian telah diukir. Jala yang baru biasanya memiliki resolusi tinggi asli informasi mesh ditransfer ke perpindahan data atau data peta yang normal jika untuk mesin permainan.

sumber : http://en.wikipedia.org/wiki/3D_modeling

Motion Capture

Motion capture, motion tracking, atau mocap adalah terminologi yang digunakan untuk mendeskripsikan proses dari perekaman gerakan dan pengartian gerakan tersebut menjadi model digital. Metode ini digunakan dalam militer, industri hiburan, olahraga, aplikasi medis, dan untuk validasi sisi computer dan robot. Dalam pembuatan film, motion capture berarti merekam aksi dari aktor manusia dan menggunakan informasi tersebut untuk menganimasi karakter digital ke model animasi computer dua dimensi atau tiga dimensi. Termasuk wajah, jari-jari atau penangkapan ekspresi yang halus, kegiatan ini biasa dikatakan sebagai performance capture.

Dalam sesi motion capture, gerakan-gerakan dari satu atau lebih aktor diambil sampelnya berkali-kali perdetik, motion capture hanya merekam gerakan-gerakan dari aktor, bukan merekam penampilan visualnya. Data animasi ini dipetakan menjadi model tiga dimensi agar model tersebut menunjukkan aksi yang sama seperti aktor.

Penggunaan Mocap Suit

Gerakan kamera juga dapat di-motion capture sehingga kamera virtual dalam sebuah skema dapat berjalan, miring, atau dikerek mengelilingi panggung dikendalikan oleh operator kamera ketika aktor sedang melakukan pertunjukan, dan sistem motion capture bisa mendapatkan kamera dan properti sebaik pertunjukan dari aktor tersebut. Hal ini membuat karakter komputer, gambar, dan set memiliki perspektif yang sama dengan gambar video dari kamera.
Keunggulan Penggunaan Motion Capture
Motion capture menawarkan beberapa keuntungan dibandingkan animasi komputer tradisional dari model tiga dimensi:
  • Lebih cepat, bahkan hasil secara real time bisa didapatkan. Dalam aplikasi hiburan, hal ini dapat mengurangi biaya dari animasi berbasis keyframe. Contohnya: Hand Over
  • Jumlah kerja tidak berubah dengan kompleksitas atau panjang pertunjukan dalam tingkatan yang sama ketika menggunakan teknik tradisional. Hal ini membuat banyak tes diselesaikan dengan gaya dan penyampaian yang berbeda
  • Gerakan kompleks dan interaksi fisik yang realistis seperti gerakan sekunder, berat, dan pertukaran tekanan dapat dengan mudah dibuat kembali dalam cara akurat secara fisik
  • Jumlah data animasi yang bisa diproduksi dalam waktu yang diberikan sangatlah besar saat dibandingkan dengan teknik animasi tradisional. Hal ini berkontribusi dalam keefektifan biaya dan mencapai deadline produksi
  • Potensi software gratis dan solusi dari pihak luar dapat mengurangi biaya yang dikeluarkan.

Kekurangan Pengunaan Motion Capture 
  • Hardware yang spesifik dan program yang special dibutuhkan untuk mendapatkan dan memproses data
  • Biaya software, perlengkapan, dan personel yang dibutuhkan dapat berpotensi menjadi penghalang bagi produksi-produksi kecil
  • Sistem pengambilan gerakan mungkin memiliki kebutuhan yang spesifik untuk ruangan operasi, tergantung dari pandangan kamera atau distorsi magnetik
  • Ketika masalah terjadi, lebih mudah untuk mengambil ulang skema daripada mencoba untuk memanipulasi data. Hanya beberapa sistem yang memungkinkan penampilan data yang real time untuk memilih apakah gambar yang diambil butuh diambil ulang.
  • Hasil yang penting itu terbatas untuk apa yang bisa ditunjukkan dalam volume pengambilan tanpa editing tambahan dari data tersebut
  • Gerakan yang tidak mengikuti hokum fisika secara umum tidak bisa diambil
  • Teknik animasi tradisional, seperti menambahkan tekanan dari antisipasi dan kelanjutannya, gerakan kedua atau memanipulasi bentuk dari karakter, seperti dengan melumatkan dan memperpanjang teknik animasi, harus ditambahkan nanti
  • Jika model komputer memiliki proporsoi yang berbeda dari subjek yang diambil, artifak mungkin terjadi. Contohnya, jika seorang karakter kartun mempunyai tangan yang berukuran terlalu besar, hal ini dapat memotong badan karakter jika orang yang melakukaknnya tidak berhati-hati dengan gerakan fisiknya.
Representasi dari Motion yang di Capture

Applikasi
Video game biasa menggunakan motion capture untuk menganimasikan atlet, ahli bela diri, dan karakter dalam permainan lainnya. Ini telah dilakukan sejak Atari Jaguar yang memiliki permainan berbasis cd, yaitu Highlander: The Last of the MacLeods, dikeluarkan tahun 1995.
Film menggunakan motion capture untuk efek CG, dalam beberapa kasus mengganti animasi tradisional, dan untuk ciptaan yang dibentuk secara utuh dari komputer, seperti Gollum, The Mummy, King Kong, dan The NA’vi dari film Avatar.

Penggunaan Mocap dalam industri Film
Metode dan sistem
Penanda reflektif ditancapkan pada kulit untuk mengidentifikasi letak tulang dan gerakan tiga dimensi dari tubuh. Motion Capture dimulasi sebagai alat analisis photogrammetric dalam penelitian biomechanics pada tahun 1970-an dan 1980-an, serta meluas ke ranah edukasi, latihan, olahraga, dan baru saja ke ranah animasi komputer untuk televise, sinema, dan video games seiring dengan dewasanya teknologi ini. Seorang yang dipilih menggunakan penanda di dekat setiap sendi tulang untuk mengidentifikasi gerakan dari posisi atau sudut antar penanda tersebut.

Sumber : http://id.wikipedia.org/wiki/Motion_capture

Sabtu, 27 April 2013

Web Science


Pengertian
 
Web adalah system dengan standar yanag diterima secara universal untuk menyimpan, menleusuri, memformat, dan menampilkan informasi melelui arsitektur klient/ server. Web bisa menerima semua jenis informasi digital, termasuk teks, hypermedia, grafis, dan suara. Web menggunakan antarmuka pengguna grafis, sehingga sangat mudah digunakan. Teknologi World Wide Web dicipatakan oleh Timothy Berners-Lee, yang pada tahun 1989 mengusulkan jaringan global dari dokumen hiperteks yang akan memungkinkan para peneliti fisika berkerja sama.

Sejarah web science dimulai dari sebuah kesepakatan antara MIT dan University of Southampton untuk menjembatani, merumuskan dan teknis aspek-aspek sosial dari World Wide Web. Hal ini pertama kali diumumkan di MIT pada tanggal 2 Novenber 2006 sebagai Web Science Research Initiative (WSRI), yang kemudian mengubah namanya pada tahun 2009 menjadi Web Science Trust. Organisasi yang diketuai oleh Timothy Berners-Lee ini bertujuan untuk mencari dukungan lebih banyak lagi dari pihak pemerintah dan swasta untuk bekerjasama pada beberapa proyek yang memperbaiki pengertian tentang Web Science dan mempromosikan dampak positif Web Science pada masyarakat.

Jadi, web science adalah sebuah disiplin ilmu pengetahuan berbasis web yang fokus pada pengembangan kebutuhan komunikasi dan representasi. Web science sendiri terdiri dari berbagai cabang disiplin ilmu yang bertujuan untuk mengkoordinasi dan meningkatkan lebih lagi pembelajaran tentang web (World Wide web).hal ini sangat diperlukan karena perkembangan web yang sangat pesat pada saat ini disadari dapat digunakan sebagai sarana untuk mengubah masyarakat kearah yang lebih baik sehingga kita semua dapat merasakan manfaat dari web secara positif.Jadi web science ini bertujuan supaya fungsi dan manfaat web dapat tepat sasaran dan tepat guna di kalangan masyarakat pada umumnya.

Dengan adanya web science, masyarakat pada umumnya dapat mengakses berbagai informasi yang berhuibungan dengan ilmu pengetahuan dengan lebih mudah. web science ini lebih menekankan dalam proses penyajian data yang berhubungan dengan penyajian internet.sehingga dengan adanya web science kita semua dapat mengambil sisi positif dari berbagai perkembangan teknologi yang ada dan memanfaatkannya atau bahkan mengembangkannya dengan sebaik-baiknya.
Menurut Hearst [Helfin, 2003] salah satu problem baru pada ledakan informasi adalah terjadinya keragaman yang disebabkan oleh beberapa hal utama sebagai berikut:
  1. Web adalah massive, dimana jumlah sumber data dan informasi berbasis web mengalami pertumbuhan yang luar biasa dalam orde ratusan ribu hingga juta per tahun.
  2. Web bersifat terdistribusi, teknologi web memberikan tingkat autonomi yang lebih tinggi sehingga ketersebarannya juga semakin besar. Akibatnya setiap pemilik web dapat menyajikan data ataupun informasi dengan vocabulary yang berbeda walau yang dimaksud adalah sama.
  3. Web juga bersifat dinamis, sebuah web bisa hadir pada jaringan Internet tidak terikat, lokasi geografis ataupun nama logika dari sebuah sumber informasi dapat berubah secara mudah dan sering, perubahan isi dari web juga tidak dapat diperkirakan.
  4. Web bersifat open, sebuah web dapat dibuat dan dibaca oleh setiap orang secara prinsip. Sehingga isu keamanan dan kepercayaan (trust) menjadi permasalah tersendiri.
Perkembangan Web Science

Pada ledakan informasi di Internet, search engine merupakan salah satu kill-application yang penting. Ini menjadi dorongan utama lahirnya search engine Mbah Google. Walaupun Google telah memiliki koleksi data yang menakjubkan, tetap saja masih ada kelemahan utama, yaitu kalau kita mencari sesuatu, maka yang sesuai dengan yang kita inginkan masih di bawah 5% dibandingkan koleksi yang ditampilkan dari pencarian Google. Ledakan informasi tersebut membawa pergeseran teknologi dan pemanfaatan Web semakin dominan.

Secara luar biasa telah terjadi pergeseran Web 1.0 ke Web 3.0 sebagai berikut:
  • Web 1.0 yang sejak tahun 1992 mulai memperkenalkan beragam web browser, serta mendorong pertumbuhan pemanfaatan Web sebagai penyedia informasi. Pada tingkat ini web masih bersifat read only.
  • Web 2.0 mulai menjadi trend pada tahun 1997, ini memperkaya sifat yang read only menjadi read write. Aplikasi berbasis Web semakin banyak diterapkan. Web dan sosial dimulai dengan lahirnya berbagai sarana seperti wikipedia, blog, friendster.
  • Web 3.0 merupakan rancangan untuk memperkaya Web 2.0, dimana pada Web 2.0 baru memperhatikan pertukaran data antara manusia, pada Web 3.0 pertukaran data antar manusia-mesin, mesin-mesin dan manusia-manusia disempurnakan.

Beberapa istilah dalam pengelolaan web

1. Domain Name
Domain Name atau biasa disebut nama domain adalah alamat permanen situs di dunia internet yang digunakan untuk mengidentifikasi sebuah situs atau dengan kata lain domain name adalah alamat yang digunakan untuk menemukan situs kita pada dunia internet. Istilah yang umum digunakan adalah url.

2. Hosting
Hosting dapat diartikan sebagai ruangan yang terdapat dalam harddisk tempat menyimpan berbagai data, file-file, gambar dan lain sebagainya yang akan ditampilkan di situs. Besarnya data yang bisa dimasukkan tergantung dari besarnya hosting yang disewa/dipunyai, semakin besar hosting semakin besar pula data yang dapat dimasukkan dan ditampilkan dalam situs.

3. Hypertext Markup Language
Bahasa pemrograman yang digunakan di Web, yang memformat dokumen dan memadukan link hiperteks dinamis ke dokumen-dokumen lainnya yang disimpan didalam komputer.

4. Design Web
Setelah melakukan penyewaan domain dan hosting serta penguasaan scripts, unsur situs yang paling penting dan utama adalah design. Design web sangat menentukan kualitas dan keindahan situs. Design sangat berpengaruh kepada penilaian pengunjung akan bagus tidaknya sebuah web site.

5. Hypertext Transfer Protokol (HTTP)
Standar komunikasi yang digunakan untuk mentransfer halaman di bagian WWW di internet. HTTP mendefinisikan bagaimana pesan diformat dan dikirim.

6. World wide web (WWW)
Sistem dengan standar yang diterima secara universal untuk menyimpan, menelusuri, memformat, dan menampilkan informasi melalui arsitektur klien/ server mengunakan fungsi-fungsi transport dari internet.

7. Home Page
Tampilan layar grafis dan teks yang menyambut pengguna dan menjelaskan organisasi yang membuat halaman tersebut.

8. Situs Web
Semua halaman Web dari perusahaan atau individu tertentu

9. Uniform Resource Locator (URL)
Serangkaian huruf yang mengidentifikasi alamat dari sumber tertentu di web.

Sumber :
http://codycoding.wordpress.com/2011/02/17/web-science/
http://safemode.web.id/artikel/teknologi/pengertian-web-science#ixzz2Ri1Xfg00
http://yonando.blogspot.com/2011/03/pengertian-web-science-dan-perkembangan.html
http://ilfen.blogspot.com/2013/04/definisi-web-science-dan-sejarah-web-10_16.html
Turban, Efraim. Pengantar Teknologi Informasi, Edisi 3. Jakarta : Salemba Infotek